2-5

Solving for a Variable

Objectives

Solve a formula for a given variable.

Solve an equation in two or more variables for one of the variables.

Vocabulary

formula literal equation

Who uses this?

Athletes can "rearrange" the distance formula to calculate their average speed.

Many wheelchair athletes compete in marathons, which cover about 26.2 miles. Using the time *t* it took to complete the race, the distance *d*, and the *formula* d = rt, racers can find their average speed *r*.

A **formula** is an equation that states a rule for a relationship among quantities.

In the formula d = rt, d is isolated. You can "rearrange" a formula to isolate any variable by using inverse operations. This is called *solving for a variable*.

	Solving for a Variable
	Step 1 Locate the variable you are asked to solve for in the equation.
	Step 2 Identify the operations on this variable and the order in which they are applied.
	Step 3 Use inverse operations to undo operations and isolate the variable.

EXAMPLE **1** Sport

Sports Application

In 2004, Ernst Van Dyk won the wheelchair race of the Boston Marathon with a time of about 1.3 hours. The race was about 26.2 miles. What was his average speed? Use the formula d = rt and round your answer to the nearest tenth.

The question asks for speed, so first solve the formula d = rt for r. d = rt Locate r in the equation.

$$d = rt$$
$$\frac{d}{t} = \frac{rt}{t}$$

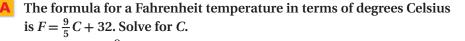
Since r is multiplied by t, divide both sides by t to undo the multiplication.

$$\frac{d}{t} = r$$
, or $r = \frac{d}{t}$

Now use this formula and the information given in the problem.

$$r = \frac{d}{t} \approx \frac{26.2}{1.3}$$
$$\approx 20.2$$

Van Dyk's average speed was about 20.2 miles per hour.



1. Solve the formula d = rt for *t*. Find the time in hours that it would take Van Dyk to travel 26.2 miles if his average speed was 18 miles per hour. Round to the nearest hundredth.

A number divided by itself equals 1. For $t \neq 0, \frac{t}{t} = 1.$ EXAMPLE

Solving Formulas for a Variable

Locate C in the equation.

$$F = \frac{9}{5}C + 32$$
$$-\frac{32}{F - 32} = \frac{9}{5}C$$
$$\left(\frac{5}{9}\right)(F - 32) = \left(\frac{5}{9}\right)\frac{9}{5}C$$
$$\frac{5}{9}(F - 32) = C$$

Since 32 is added to $\frac{9}{5}$ C, subtract 32 from both sides to undo the addition. Since C is multiplied by $\frac{9}{5}$, divide both sides by $\frac{9}{5}$ (multiply by $\frac{5}{9}$) to undo the multiplication.

The formula for a person's typing speed is $s = \frac{w - 10e}{m}$, where *s* is speed in words per minute, *w* is number of words typed, *e* is number of errors, and *m* is number of minutes typing. Solve for *w*.

$$s = \frac{w - 10e}{m}$$
$$m(s) = m\left(\frac{w - 10e}{m}\right)$$
$$ms = w - 10e$$
$$\frac{+10e}{ms + 10e} = w$$

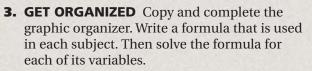
Locate w in the equation.

Since w - 10e is divided by m, multiply both sides by m to undo the division.

Since 10e is subtracted from w, add 10e to both sides to undo the subtraction.

2. The formula for an object's final velocity f is f = i - gt, where i is the object's initial velocity, g is acceleration due to gravity, and t is time. Solve for i.

A formula is a type of *literal equation*. A **literal equation** is an equation with two or more variables. To solve for one of the variables, use inverse operations.


EXAMPLE3Solving Literal Equations for a VariableASolve
$$m - n = 5$$
 for m . $m - n = 5$ Locate m in the equation. $- + n$ $+ n$ $m = 5 + n$ Since n is subtracted from m , add n to both sides to undo the subtraction.BSolve $\frac{m}{k} = x$ for k . $\frac{m}{k} = x$ Locate k in the equation. $k\left(\frac{m}{k}\right) = kx$ Since k appears in the denominator, multiply both sides by k . $m = kx$ Since k is multiplied by x , divide both sides by x to undo the multiplication. $\frac{m}{x} = \frac{kx}{x}$ Since k is multiplied by x , divide both sides by x to undo the multiplication. $\frac{m}{x} = k$ Solve $5 - b = 2t$ for t .3b. Solve $D = \frac{m}{V}$ for V .

Remember!

Dividing by a fraction is the same as multiplying by the reciprocal.

THINK AND DISCUSS

- Describe a situation in which a formula could be used more easily if it were "rearranged." Include the formula in your description.
- **2.** Explain how to solve $P = 2\ell + 2w$ for *w*.

Common Formulas			
Subject	Formula		
Geometry			
Physical science			
Earth science			

(now I

GUIDED PRACTICE

- 1. Vocabulary Explain why a *formula* is a type of *literal equation*.
- **2.** Construction The formula *a* = 46*c* gives the floor area *a* in square meters that can be wired using *c* circuits.
 - **a.** Solve a = 46c for c.
 - **b.** If a room is 322 square meters, how many circuits are required to wire this room?
- **3.** The formula for the volume of a rectangular prism with length ℓ , width w, and height h is $V = \ell w h$. Solve this formula for w.

4. Solve st + 3t = 6 for *s*.

6. Solve
$$\frac{f+4}{g} = 6$$
 for f .

5. Solve m - 4n = 8 for *m*.


7. Solve
$$b + c = \frac{10}{a}$$
 for *a*.

PRACTICE AND PROBLEM SOLVING

- **8. Geometry** The formula C = 2πr relates the circumference C of a circle to its radius r. (Recall that π is the constant ratio of circumference to diameter.)
 - **a.** Solve $C = 2\pi r$ for *r*.
 - **b.** If a circle's circumference is 15 inches, what is its radius? Leave the symbol π in your answer.
- **9.** Finance The formula A = P + I shows that the total amount of money *A* received from an investment equals the principal *P* (the original amount of money invested) plus the interest *I*. Solve this formula for *I*.
- **10.** Solve -2 = 4r + s for *s*.
- **12.** Solve $\frac{m}{n} = p 6$ for *n*.

11. Solve xy - 5 = k for *x*.

13. Solve
$$\frac{x-2}{y} = z$$
 for *y*.

SEE EXAMPLE

SEE EXAMPLE

p. 107

p. 108

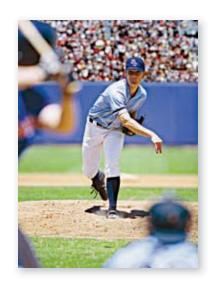
Independent Practice				
For Exercises	See Example			
8	1			
9	2			
5	2			
10–13	3			

Extra Practice Skills Practice p. S6 Application Practice p. S29

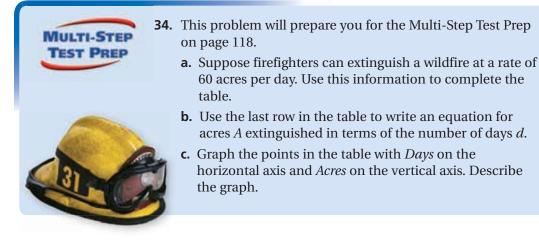
C is the distance around the circle.

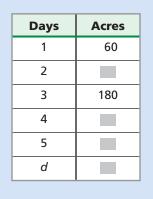
circle to any point on the circle.

r is the distance from the center of the


Solve for the indicated variable.

14. $S = 180n - 360$ for n	15. $\frac{x}{5} - g = a$ for x
17. $y = mx + b$ for x	18. $a = 3n + 1$ for n
20. $T + M = R$ for T	21. $M = T - R$ for T
23. $2a + 2b = c$ for b	24. $5p + 9c = p$ for c
26. $3x + 7y = 2$ for y	27. $4y + 3x = 5$ for x


- **29. Estimation** The table shows the flying time and distance traveled for five flights on a certain airplane.
 - **a.** Use the data in the table to write a rule that *estimates* the relationship between flying time *t* and distance traveled *d*.
 - **b.** Use your rule from part **a** to estimate the time that it takes the airplane to fly 1300 miles.
 - **c.** Solve your rule for *d*.
 - **d.** Use your rule from part **c** to estimate the distance the airplane can fly in 8 hours.
- **30. Sports** To find a baseball pitcher's earned run average (ERA), you can use the formula Ei = 9r, where *E* represents ERA, *i* represents number of innings pitched, and *r* represents number of earned runs allowed. Solve the equation for *E*. What is a pitcher's ERA if he allows 5 earned runs in 18 innings pitched?
- **31. Meteorology** For altitudes up to 36,000 feet, the relationship between temperature and altitude can be described by the formula t = -0.0035a + g, where *t* is the temperature in degrees Fahrenheit, *a* is the altitude in feet, and *g* is the ground temperature in degrees Fahrenheit. Solve this formula for *a*.
- **32.** Write About It In your own words, explain how to solve a literal equation for one of the variables.


- **16.** $A = \frac{1}{2}bh$ for *b*
- **19.** PV = nRT for *T*
- **22.** PV = nRT for *R*
- **25.** ax + r = 7 for r
- **28.** y = 3x + 3b for b

Flying Times					
Flight	Time (h)	Distance (mi)			
А	2	1018			
В	3	1485			
С	4	2103			
D	5	2516			
E	6	2886			

33. Critical Thinking How is solving a - ab = c for *a* different from the problems in this lesson? How might you solve this equation for *a*?

35. Which equation is the result of solving 9 + 3x = 2y for x?

(A)
$$\frac{9+3y}{2} = x$$
 (B) $\frac{2}{3}y - 9 = x$ (C) $x = \frac{2}{3}y - 3$ (D) $x = 2y - 3$

- **36.** Which of the following is a correct method for solving 2a 5b = 10 for b?
 - \bigcirc Add 5*b* to both sides, then divide both sides by 2.
 - G Subtract 5*b* from both sides, then divide both sides by 2.
 - (\mathbf{H}) Divide both sides by 5, then add 2*a* to both sides.
 - \bigcirc Subtract 2*a* from both sides, then divide both sides by -5.
- **37.** The formula for the volume of a rectangular prism is $V = \ell wh$. Anna wants to make a cardboard box with a length of 7 inches, a width of 5 inches, and a volume of 210 cubic inches. Which variable does Anna need to solve for in order to build her box?

CHALLENGE AND EXTEND

Solve for the indicated variable.

- **38.** 3.3x + r = 23.1 for x **39.** $\frac{2}{5}a - \frac{3}{4}b = c$ for a **40.** $\frac{3}{5}x + 1.4y = \frac{2}{5}$ for y **41.** $t = \frac{d}{500} + \frac{1}{2}$ for d **42.** $s = \frac{1}{2}gt^2$ for g**43.** $v^2 = u^2 + 2as$ for s
- **44.** Solve y = mx + 6 for *m*. What can you say about *y* if m = 0?
- 45. Entertainment The formula

 $S = \frac{h \cdot w \cdot f \cdot t}{35,000}$ gives the approximate size in kilobytes (Kb) of a compressed video. The variables *h* and *w* represent the height and width of the frame measured in pixels, *f* is the number of frames per second (fps) the video plays, and *t* is the time the video plays in seconds. Estimate the time a movie trailer will play if it has a frame height of 320 pixels, has a frame width of 144 pixels, plays at 15 fps, and has a size of 2370 Kb.

SPIRAL REVIEW

- **46.** Jill spent $\frac{1}{4}$ of the money she made baby-sitting. She made \$40 baby-sitting. How much did she spend? (*Previous course*)
- **47.** In one class, $\frac{3}{5}$ of the students are boys. There are 30 students in the class. How many are girls? (*Previous course*)

Evaluate each expression for the given value of *x*. (Lesson 1-6)

48. $3 + 2 \cdot x + 4$ for x = 3 **49.** $24 \div 4 - x$ for x = 12 **50.** 43 - 62 + x for x = 15

Solve each equation. Check your answer. (Lesson 2-1)

51. 18 = -2 + w **52.** 2 = -3 + c **53.** -8 + k = 4 **54.** -15 + a = -27