Rational Exponents

Objective

Evaluate and simplify expressions containing rational exponents.

7-5

Vocabulary

index

Why learn this?

So for all b > 1, $\sqrt{b} = b^{\frac{1}{2}}$.

You can use rational exponents to find the number of Calories animals need to consume each day to maintain health. (See Example 3.)

Recall that the radical symbol $\sqrt{}$ is used to indicate roots. The **index** is the small number to the left of the radical symbol that tells which root to take. For example, $\sqrt[3]{}$ represents a cube root. Since $2^3 = 2 \cdot 2 \cdot 2 = 8$, $\sqrt[3]{8} = 2$.

Another way to write *n*th roots is by using exponents that are fractions. For example, for b > 1, suppose $\sqrt{b} = b^k$.

$$\begin{array}{ll} \sqrt{b} &= b^{k} \\ \left(\sqrt{b}\right)^{2} &= \left(b^{k}\right)^{2} \; \text{Square both sides.} \\ b^{1} &= b^{2k} \; \text{Power of a Power Property} \\ 1 &= 2k \; \text{If } b^{m} = b^{n}, \; \text{then } m = n. \\ \frac{1}{2} &= k \; \text{Divide both sides by 2.} \end{array}$$

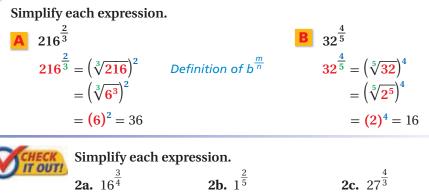
Helpful Hint

When b = 0, $\sqrt[n]{b} = 0$. When b = 1, $\sqrt[n]{b} = 1$.

Know	Definition of $b^{\frac{1}{n}}$		
Mate	WORDS	NUMBERS	ALGEBRA
	A number raised to the power of $\frac{1}{n}$ is equal to the <i>n</i> th root of that number.	$3^{\frac{1}{2}} = \sqrt{3}$ $5^{\frac{1}{4}} = \sqrt[4]{5}$ $2^{\frac{1}{7}} = \sqrt[7]{2}$	If $b > 1$ and n is an integer, where $n \ge 2$, then $b^{\frac{1}{n}} = \sqrt[n]{b}$. $b^{\frac{1}{2}} = \sqrt{b}, b^{\frac{1}{3}} = \sqrt[3]{b},$ $b^{\frac{1}{4}} = \sqrt[4]{b}$, and so on.

EXAMPLE 1
Simplifying
$$b^{\frac{1}{n}}$$

Simplify each expression.
A $125^{\frac{1}{3}}$
 $125^{\frac{1}{3}} = \sqrt[3]{125} = \sqrt[3]{5^3}$
 $125^{\frac{1}{3}} = \sqrt[3]{125} = \sqrt[3]{125$


Simplify each expression. **1b.** $121^{\frac{1}{2}} + 256^{\frac{1}{4}}$ **1a.** $81^{\frac{1}{4}}$

A fractional exponent can have a numerator other than 1, as in the expression $b^{\overline{3}}$. You can write the exponent as a product in two different ways.

$$b^{\frac{2}{3}} = b^{\frac{1}{3} \cdot 2} \qquad b^{\frac{2}{3}} = b^{2 \cdot \frac{1}{3}}$$
$$= \left(b^{\frac{1}{3}}\right)^{2} \qquad \text{Power of a Power Property} \qquad = \left(b^{2}\right)^{\frac{1}{3}}$$
$$= \left(\sqrt[3]{b}\right)^{2} \qquad \text{Definition of } b^{\frac{1}{n}} \qquad = \sqrt[3]{b^{2}}$$

Know	Definition of $b^{\frac{m}{n}}$		
note	WORDS	NUMBERS	ALGEBRA
	A number raised to the power of $\frac{m}{n}$ is equal to the <i>n</i> th root of the number raised to the <i>m</i> th power.	$8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$ $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$	and $n > 2$ then

EXAMPLE **Simplifying Expressions with Fractional Exponents**

EXAMPLE

Biology Application

The approximate number of Calories C that an animal needs each day is given by $C = 72m^{\frac{1}{4}}$, where *m* is the animal's mass in kilograms. Find the number of Calories that a 16 kg dog needs each day.

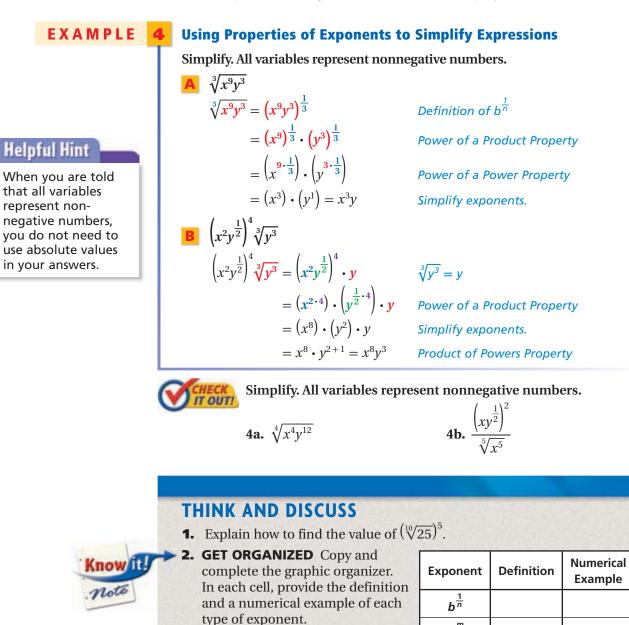
2b. $1^{\frac{2}{5}}$

 $C = 72m^{\frac{3}{4}}$ $= 72(16)^{\frac{3}{4}}$ Substitute 16 for m. $= 72 \cdot \left(\sqrt[4]{16}\right)^3$ Definition of $b^{\frac{m}{n}}$ $=72 \cdot \left(\sqrt[4]{2^4}\right)^3$ $= 72 \cdot (2)^3$ $= 72 \cdot 8 = 576$

The dog needs 576 Calories per day to maintain health.

T OUT!

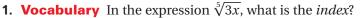
3. Find the number of Calories that an 81 kg panda needs each day.

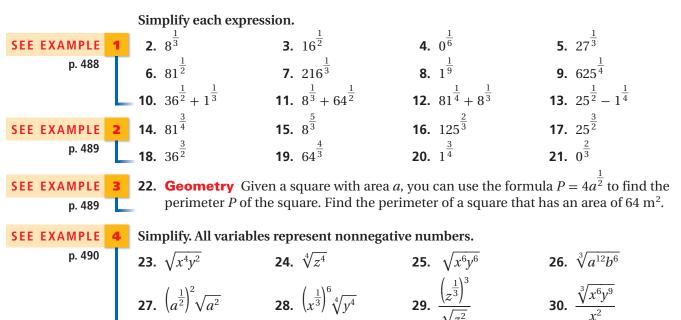

2c. $27^{\frac{4}{3}}$

Remember that $\sqrt{}$ always indicates a nonnegative square root. When you simplify variable expressions that contain $\sqrt{}$, such as $\sqrt{x^2}$, the answer cannot be negative. But *x* may be negative. Therefore you simplify $\sqrt{x^2}$ as |x| to ensure the answer is nonnegative.

When <i>x</i> is	and <i>n</i> is	<i>xⁿ</i> is	and <i>∜xⁿ</i> is
Positive	Even	Positive	Positive
Negative	Even	Positive	Positive
Positive	Odd	Positive	Positive
Negative	Odd	Negative	Negative

 $b^{\frac{m}{n}}$


When *n* is even, you must simplify $\sqrt[n]{x^n}$ to |x|, because you do not know whether *x* is positive or negative. When *n* is odd, simplify $\sqrt[n]{x^n}$ to *x*.



7-5

GUIDED PRACTICE

PRACTICE AND PROBLEM SOLVING

Independer	nt Practice
For Exercises	See Example
31–42	1
43–50	2
51	3
52–59	4

Extra Practice Skills Practice p. S17 Application Practice p. S34

Simplify each exp	ression.		
1	1	1	1
31. $100^{\overline{2}}$	32. $1^{\overline{5}}$	33. $512^{\overline{3}}$	34. 729 [±]
35. $32^{\frac{1}{5}}$	36. $196^{\frac{1}{2}}$	37. $256^{\frac{1}{8}}$	38. $400^{\frac{1}{2}}$
39. $125^{\frac{1}{3}} + 81^{\frac{1}{2}}$	40. $25^{\frac{1}{2}} - 81^{\frac{1}{4}}$	41. $121^{\frac{1}{2}} - 243^{\frac{1}{5}}$	42. $256^{\frac{1}{4}} + 0^{\frac{1}{3}}$
43. $4^{\frac{3}{2}}$	44. $27^{\frac{2}{3}}$	45. $256^{\frac{3}{4}}$	46. $64^{\frac{5}{6}}$
47. $100^{\frac{3}{2}}$	48. $1^{\frac{5}{3}}$	49. $9^{\frac{5}{2}}$	50. $243^{\frac{2}{5}}$

51. Biology Biologists use a formula to estimate the mass of a mammal's brain. For a mammal with a mass of *m* grams, the approximate mass *B* of the brain, also in grams, is given by $B = \frac{1}{8}m^{\frac{2}{3}}$. Find the approximate mass of the brain of a mouse that has a mass of 64 grams.

Simplify. All variables represent nonnegative numbers.

52. $\sqrt[3]{a^6c^9}$ **53.** $\sqrt[3]{8m^3}$ **54.** $\sqrt[4]{x^{16}y^4}$ **55.** $\sqrt[3]{27x^6}$ **56.** $\left(x^{\frac{1}{2}}y^3\right)^2\sqrt{x^2}$ **57.** $(a^2b^4)^{\frac{1}{2}}\sqrt[3]{b^6}$ **58.** $\frac{\sqrt[3]{x^6y^6}}{yx^2}$ **59.** $\frac{\left(a^2b^{\frac{1}{2}}\right)^4}{\sqrt{b^2}}$

Fill in the boxes to make each statement true.

60. $256^{\overline{4}} = 4$	61. $1^{\frac{1}{5}} = 1$	62. $225^{\frac{1}{2}} = 15$	63. $\int_{6}^{1} = 0$
64. $64^{\overline{3}} = 16$	65. $angle \frac{3}{4} = 125$	66. $27^{\frac{4}{2}} = 81$	67. $36^{\overline{2}} = 216$

Simplify each expression.

68.
$$\left(\frac{81}{169}\right)^{\frac{1}{2}}$$
 69. $\left(\frac{8}{27}\right)^{\frac{1}{3}}$

71.
$$\left(\frac{1}{16}\right)^{\frac{1}{2}}$$
 72. $\left(\frac{9}{16}\right)^{\frac{3}{2}}$

74.
$$\left(\frac{16}{81}\right)^{\frac{3}{4}}$$
 75. $\left(\frac{4}{49}\right)^{\frac{3}{2}}$

77.
$$\left(\frac{1}{81}\right)^{\frac{3}{4}}$$
 78. $\left(\frac{27}{64}\right)^{\frac{2}{3}}$

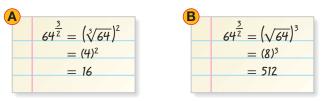
80. Multi-Step Scientists have found that the life span of a mammal living in captivity is related to the mammal's mass. The life span in years *L* can be approximated by the formula

 $L = 12m^{\frac{1}{5}}$, where *m* is the mammal's mass in kilograms. How much longer is the life span of a lion compared with that of a wolf?

Typical Mass of Mammals			
Mammal Mass (kg)			
Koala	8		
Wolf	32		
Lion	243		
Giraffe	1024		

70. $\left(\frac{256}{81}\right)^{\frac{1}{4}}$

73. $\left(\frac{8}{27}\right)^{\frac{2}{3}}$


76. $\left(\frac{4}{25}\right)^{\frac{3}{2}}$

79. $\left(\frac{8}{125}\right)^{\frac{4}{3}}$

- **81. Geometry** Given a sphere with volume *V*, the formula $r = 0.62V^{\frac{1}{3}}$ may be used to approximate the sphere's radius *r*. Find the approximate radius of a sphere that has a volume of 27 in³.
 - **82.** Critical Thinking Show that a number raised to the power $\frac{1}{3}$ is the same as the cube root of that number. (*Hint:* Use properties of exponents to find the cube

of $b^{\frac{1}{3}}$. Then compare this with the cube of $\sqrt[3]{b}$. Use the fact that if two numbers have the same cube, then they are equal.)

- **83.** Critical Thinking Compare $n^{\frac{2}{3}}$ and $n^{\frac{3}{2}}$ for values of *n* greater than 1. When simplifying each of these expressions, will the result be greater than *n* or less than *n*? Explain.
- **84.** *[[]* **ERROR ANALYSIS** *[]* Two students simplified $64^{\frac{3}{2}}$. Which solution is incorrect? Explain the error.

- **85.** This problem will prepare you for the Multi-Step Test Prep on page 494. You can estimate an object's distance in inches from a light source by using the formula $d = \left(0.8\frac{L}{B}\right)^{\frac{1}{2}}$, where *L* is the light's luminosity in lumens and *B* is the light's brightness in lumens per square inch.
- **a.** Find an object's distance to a light source with a luminosity of 4000 lumens and a brightness of 32 lumens per square inch.
- **b.** Suppose the brightness of this light source decreases to 8 lumens per square inch. How does the object's distance from the source change?

86. Write About It You can write $4^{\frac{3}{2}}$ as $4^{3\cdot\frac{1}{2}}$ or as $4^{\frac{1}{2}\cdot3}$. Use the Power of a Power Property to show that both expressions are equal. Is one method easier than the other? Explain.

TEST PREP

87.	What is $9^{\frac{1}{2}} + 8^{\frac{1}{3}}$?			
	A 4	B 5	(C) 6	D 10
88.	Which expression is e	equal to 8?		
	(F) $4^{\frac{3}{2}}$	G $16^{\frac{1}{2}}$	(H) $32^{\frac{4}{5}}$	\bigcirc 64 ^{$\frac{3}{2}$}
89.	Which expression is e	equivalent to $\sqrt[3]{a^9b^3}$?	
	0	$\textcircled{B} a^3$	C a ³ b	(D) a^3b^3
90.	Which of the followi	ng is NOT equal to 1	$16^{\frac{3}{2}}$?	
	$(\mathbf{F}) (\sqrt{16})^3$	G 4 ³	$\textcircled{H} \left(\sqrt[3]{16}\right)^2$	$\bigcirc \sqrt{16^3}$

CHALLENGE AND EXTEND

Use properties of exponents to simplify each expression.

91. $(a^{\frac{1}{3}})(a^{\frac{1}{3}})(a^{\frac{1}{3}})$ **92.** $(x^{\frac{1}{2}})^5(x^{\frac{3}{2}})$ **93.** $(x^{\frac{1}{3}})^4(x^5)^{\frac{1}{3}}$

You can use properties of exponents to help you solve equations. For example, to solve $x^3 = 64$, raise both sides to the $\frac{1}{3}$ power to get $(x^3)^{\frac{1}{3}} = 64^{\frac{1}{3}}$. Simplifying both sides gives x = 4. Use this method to solve each equation. Check your answer.

94.
$$y^5 = 32$$
 95. $27x^3 = 729$ **96.** $1 = \frac{1}{8}x^3$

97. Geometry The formula for the surface area of a sphere *S* in terms of its volume *V* is $S = (4\pi)^{\frac{1}{3}} (3V)^{\frac{2}{3}}$. What is the surface area of a sphere that has a volume of 36π cm³? Leave the symbol π in your answer. What do you notice?

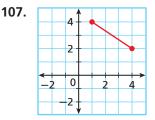
SPIRAL REVIEW

Solve each equation. (Lesson 2-6)

98.
$$|x+6| = 2$$
 99. $|5x+5| = 0$ **100.** $|2x-1| = 3$

Solve each inequality and graph the solutions. (Lesson 3-4)

101.
$$3n + 5 < 14$$
 102. $4 \le \frac{1}{2}x + 3$ **103.** $7 \ge 2y + 11$


Give the domain and range of each relation. Tell whether the relation is a function. Explain. (*Lesson 4-2*)

104. {(2, 3), (2, 4), (2, 5), (2, 6)}

106.	х	

Х	У
5	2
7	2
9	2
11	2

105.
$$\{(-2, 0), (-1, 1), (0, 2), (1, 3)\}$$

Exponents

I See the Light! The speed of light is the product of its frequency *f* and its wavelength *w*. In air, the speed of light is 3×10^8 m/s.

- 1. Write an equation for the relationship described above, and then solve this equation for frequency. Write this equation as an equation with *w* raised to a negative exponent.
- **2.** Wavelengths of visible light range from 400 to 700 nanometers (10^{-9} meters) . Use a graphing calculator and the relationship you found in Problem 1 to graph frequency as a function of wavelength. Sketch the graph with the axes clearly labeled. Describe your graph.
- **3.** The speed of light in water is $\frac{3}{4}$ of its speed in air. Find the speed of light in water.
- **4.** When light enters water, some colors bend more than others. How much the light bends depends on its wavelength. This is what creates a rainbow. The frequency of green light is about 5.9×10^{14} cycles per second. Find the wavelength of green light in water.
- 5. When light enters water, colors with shorter wavelengths bend more than colors with longer wavelengths. Violet light has a frequency of 7.5×10^{14} cycles per second, and red light has a frequency of 4.6×10^{14} cycles per second. Which of these colors of light will bend more when it enters water? Justify your answer.

Quiz for Lessons 7-1 Through 7-5

🧭 7-1 Integer Exponents

Evaluate each expression for the given value(s) of the variable(s).

1. t^{-6} for t = 2 **2.** n^{-6}

2. n^{-3} for n = -5

3.
$$r^0 s^{-2}$$
 for $r = 8$ and $s = 10$

Simplify.

4. $5k^{-3}$

5. $\frac{x^4}{v^{-6}}$

6.
$$8f^{-4}g^0$$

7. $\frac{a^{-3}}{b^{-2}}$

Selected Metric Prefixes					
Milli- Centi- Deci- Deka- Hecto- Kilo-					
10 ⁻³	10 ⁻²	10 ⁻¹	10 ¹	10 ²	10 ³

7-2 Powers of 10 and Scientific Notation

11. Write 100,000,000,000 as a power of 10.

8. Measurement Metric units can be written in terms of a base unit. The table shows some of these equivalencies. Simplify each

9. Find the value of 10^4 .

expression.

- **10.** Write 0.0000001 as a power of 10.
- **12.** Find the value of 82.1×10^4 .
- **13. Measurement** The lead in a mechanical pencil has a diameter of 0.5 mm. Write this number in scientific notation.

7-3 Multiplication Properties of Exponents

Simplify.

14. $2^2 \cdot 2^5$ **15.** $3^5 \cdot 3^{-3}$ **16.** $p^4 \cdot p^5$ **17.** $a^3 \cdot a^{-6} \cdot a^{-2}$

18. Biology A swarm of locusts was estimated to contain 2.8×10^{10} individual insects. If each locust weighs about 2.5 grams, how much did this entire swarm weigh? Write your answer in scientific notation.

Simplify.

19. $(3x^4)^3$ **20.** $(m^3n^2)^5$ **21.** $(-4d^7)^2$ **22.** $(cd^6)^3 \cdot (c^5d^2)^2$

7-4 Division Properties of Exponents

Simplify.

23. $\frac{6^9}{6^7}$	24. $\frac{12a^5}{3a^2}$	25. $\left(\frac{3}{5}\right)^3$	26. $\left(\frac{4p^3}{2pq^4}\right)^2$
------------------------------	---------------------------------	---	--

Simplify each quotient and write the answer in scientific notation.

27. $(8 \times 10^9) \div (2 \times 10^6)$ **28.** $(3.5 \times 10^5) \div (7 \times 10^8)$ **29.** $(1 \times 10^4) \div (4 \times 10^4)$

7-5 Rational Exponents

Simplify each expression. All variables represent nonnegative numbers.

30. $81^{\frac{1}{2}}$	31. $125^{\frac{1}{3}}$	32. $4^{\frac{3}{2}}$	33. $0^{\frac{2}{9}}$
34. $\sqrt{x^8y^4}$	35. $\sqrt[3]{r^9}$	36. $\sqrt[6]{z^{12}}$	37 . $\sqrt[3]{p^3q^{12}}$