Reference

Properties

Properties of Equality

Addition Property of Equality If a = b, then a + c = b + c.

Multiplication Property of Equality If a = b, then $a \cdot c = b \cdot c$, $c \neq 0$.

Reflexive Property of Equality a = a

Transitive Property of Equality If a = b and b = c, then a = c. Subtraction Property of Equality If a = b, then a - c = b - c.

Division Property of Equality If a = b, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$.

Symmetric Property of Equality If a = b, then b = a.

For any angle $A, \angle A \cong \angle A$.

If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

Substitution Property of Equality If a = b, then *a* can be substituted for *b* (or *b* for *a*) in any equation or expression.

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

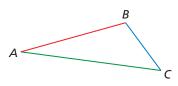
Properties of Segment and Angle Congruence

Reflexive Property of Congruence For any segment $AB, \overline{AB} \cong \overline{AB}$.

Symmetric Property of Congruence If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

Transitive Property of Congruence If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Other Properties


Transitive Property of Parallel Lines If $p \parallel q$ and $q \parallel r$, then $p \parallel r$.

Distributive Property Sum

a(b + c) = ab + acDifference a(b - c) = ab - ac

Triangle Inequalities

Triangle Inequality Theorem

AB + BC > ACAC + BC > ABAB + AC > BC

Pythagorean Inequalities Theorem

b C a

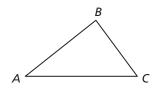
If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

If $c^2 > a^2 + b^2$, then $\triangle ABC$ is obtuse.

Formulas

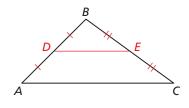
Coordinate Geometry

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$

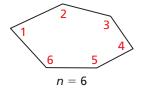

Midpoint Formula

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

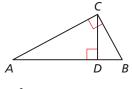
Standard form of a linear equation Ax + By = C


Polygons

Triangle Sum Theorem


 $m \angle A + m \angle B + m \angle C = 180^{\circ}$

Triangle Midsegment Theorem


 $\overline{DE} \| \overline{AC}, DE = \frac{1}{2}AC$

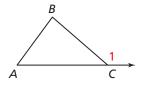
Polygon Interior Angles Theorem

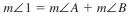
 $m \angle 1 + m \angle 2 + \dots + m \angle n = (n-2) \cdot 180^{\circ}$

Geometric Mean (Altitude) Theorem

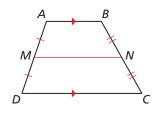
 $CD^2 = AD \bullet BD$

Slope-intercept form y = mx + b

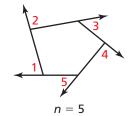

Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$


Standard equation of a circle $(x - h)^2 + (y - k)^2 = r^2$, with center (h, k) and radius r **Point-slope form** $y - y_1 = m(x - x_1)$

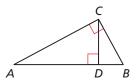
Partitioning a segment on a number line $ax_1 + bx_2$ partitions the segment


 $\frac{ax_1 + bx_2}{a + b}$ partitions the segment in the ratio b : a.

Exterior Angle Theorem

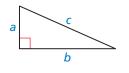


Trapezoid Midsegment Theorem

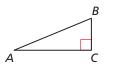

 $\overline{MN} \| \overline{AB}, \overline{MN} \| \overline{DC}, MN = \frac{1}{2}(AB + CD)$

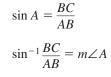

Polygon Exterior Angles Theorem

 $m \angle 1 + m \angle 2 + \dots + m \angle n = 360^{\circ}$


Geometric Mean (Leg) Theorem

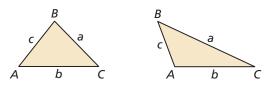
Right Triangles


Pythagorean Theorem

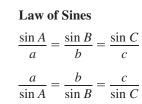


Trigonometry

Ratios


45°-45°-90° Triangles

hypotenuse = leg • $\sqrt{2}$


Sine and cosine of complementary angles Let *A* and *B* be complementary angles. Then the following statements are true.

 $\sin A = \cos(90^\circ - A) = \cos B$ $\sin B = \cos(90^\circ - B) = \cos A$ $\cos A = \sin(90^\circ - A) = \sin B$ $\cos B = \sin(90^\circ - B) = \cos A$

Any Triangle

Area Area $= \frac{1}{2}bc \sin A$ Area $= \frac{1}{2}ac \sin B$ Area $= \frac{1}{2}ab \sin C$

Law of Cosines $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

Probability and Combinatorics

Theoretical Probability =	Number of favorable outcomes
	Total number of outcomes

Probability of the complement of an event $P(\overline{A}) = 1 - P(A)$

Probability of dependent events $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$

Permutations

 $_{n}P_{r} = \frac{n!}{(n-r)!}$

Combinations ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$

Experimental Probability =
$$\frac{\text{Number of successes}}{\text{Number of trials}}$$

Probability of independent events $P(A \text{ and } B) = P(A) \bullet P(B)$

Probability of compound events P(A or B) = P(A) + P(B) - P(A and B)

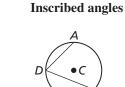
Binomial experiments

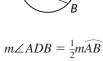
 $P(k \text{ successes}) = {}_{n}C_{k}p^{k}(1-p)^{n-k}$

hypotenuse = shorter leg • 2 longer leg = shorter leg • $\sqrt{3}$

Conversion between degrees and radians $180^\circ = \pi$ radians

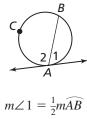
Circles


Arc length


Arc length of $\widehat{AB} = \frac{m\widehat{AB}}{360^{\circ}} \cdot 2\pi r$

Central angles

 $m \angle ACB = m \widehat{AB}$

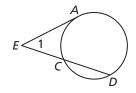


Area of a sector

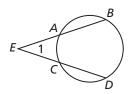
Area of sector $APB = \frac{m\widehat{AB}}{360^{\circ}} \cdot \pi r^2$

Tangent and intersected chord

$$m \angle 2 = \frac{1}{2}m\widehat{BCA}$$

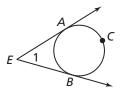

Angles and Segments of Circles

Two chords


$$m \angle 1 = \frac{1}{2} (m \widehat{AC} + m \widehat{DB})$$

EA • EB = EC • ED

Tangent and secant


 $m \angle 1 = \frac{1}{2} (m \widehat{AD} - m \widehat{AC})$ $EA^2 = EC \bullet ED$

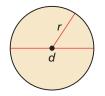
Two secants

$$m \angle 1 = \frac{1}{2} \left(m \widehat{BD} - m \widehat{AC} \right)$$

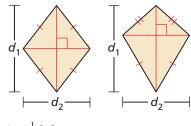
EA • EB = EC • ED

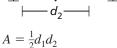
Two tangents

$$m \angle 1 = \frac{1}{2} (m \widehat{ACB} - m \widehat{AB})$$
$$EA = EB$$


Perimeter, Area, and Volume Formulas

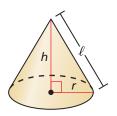
Square


P = 4s $A = s^2$


Circle

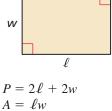
 $C = \pi d$ or $C = 2\pi r$ $A = \pi r^2$

Rhombus/Kite

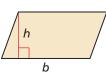


L = PhS = 2B + PhV = Bh

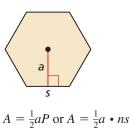
Cone



 $L=\pi r\ell$


 $V = \frac{1}{3}\pi r^2 h$

 $S = \pi r^2 + \pi r \ell$

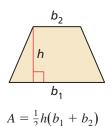


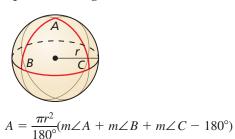
Parallelogram

A = bh

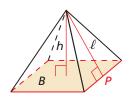
Regular *n*-gon

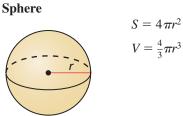
Cylinder


 $L = 2\pi rh$ $S = 2\pi r^2 + 2\pi r h$ $V = \pi r^2 h$



P = a + b + c $A = \frac{1}{2}bh$


Trapezoid


Spherical triangle

Pyramid

Other Formulas

Geometric mean

 $x = \sqrt{a \cdot b}$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

where $a \neq 0$ and $b^2 - 4ac \ge 0$

Similar polygons or similar solids with scale factor *a* : *b*

Ratio of perimeters = a : bRatio of areas $= a^2 : b^2$ Ratio of volumes $= a^3 : b^3$

Conversions

U.S. Customary

foot = 12 inches
yard = 3 feet
mile = 5280 feet
mile = 1760 yards
acre = 43,560 square feet
cup = 8 fluid ounces
pint = 2 cups
quart = 2 pints
gallon = 4 quarts
gallon = 231 cubic inches
pound = 16 ounces
ton = 2000 pounds

Metric

centimeter = 10 millimeters
meter = 100 centimeters
kilometer = 1000 meters
liter = 1000 milliliters
kiloliter = 1000 liters
milliliter = 1 cubic centimeter
liter = 1000 cubic centimeters
cubic millimeter = 0.001 milliliter
gram = 1000 milligrams
kilogram = 1000 grams

U.S. Customary to Metric 1 inch = 2.54 centimeters 1 foot \approx 0.3 meter 1 mile \approx 1.61 kilometers 1 quart \approx 0.95 liter 1 gallon \approx 3.79 liters 1 cup \approx 237 milliliters 1 pound \approx 0.45 kilogram 1 ounce \approx 28.3 grams 1 gallon \approx 3785 cubic centimeters

Time

1 minute = 60 seconds 1 hour = 60 minutes 1 hour = 3600 seconds 1 year = 52 weeks

Temperature

$$C = \frac{5}{9}(F - 32)$$

F = $\frac{9}{5}C + 32$

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch 1 meter ≈ 3.28 feet 1 meter ≈ 39.37 inches 1 kilometer ≈ 0.62 mile 1 liter ≈ 1.06 quarts 1 liter ≈ 0.26 gallon 1 kilogram ≈ 2.2 pounds 1 gram ≈ 0.035 ounce 1 cubic meter ≈ 264 gallons