Reference

Reference A61

Reference

Properties

Properties of Equality

Addition Property of Equality If a = b, then a + c = b + c.

Multiplication Property of Equality If a = b, then $a \cdot c = b \cdot c$, $c \neq 0$.

Properties of Inequality

Addition Property of Inequality If a > b, then a + c > b + c. If a < b, then a + c < b + c.

Multiplication Property of Inequality (c > 0)

If a > b and c > 0, then ac > bc.

If a < b and c > 0, then ac < bc.

Multiplication Property of Inequality (c < 0)

If a > b and c < 0, then ac < bc. If a < b and c < 0, then ac > bc.

* The Properties of Inequality are also true for \geq and \leq .

Negative Exponent

 $(a^m)^n = a^{mn}$

 $a^{-n} = \frac{1}{a^n}$, where $a \neq 0$

Rational Exponents $a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$

Power of a Power Property

Properties of Exponents

Zero Exponent $a^0 = 1$, where $a \neq 0$

Quotient of Powers Property $\frac{a^m}{a^n} = a^{m-n}$, where $a \neq 0$

Power of a Quotient Property $\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}, \text{ where } b \neq 0$

Properties of Radicals

Product Property of Square Roots $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, where $a, b \ge 0$

Other Properties

Zero-Product Property If *a* and *b* are real numbers and ab = 0, then a = 0 or b = 0. Subtraction Property of Equality If a = b, then a - c = b - c.

Division Property of Equality If a = b, then $a \div c = b \div c$, $c \ne 0$.

Subtraction Property of Inequality If a > b, then a - c > b - c. If a < b, then a - c < b - c.

Division Property of Inequality (c > 0) If a > b and c > 0, then $\frac{a}{c} > \frac{b}{c}$. If a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$.

Division Property of Inequality (c < 0) If a > b and c < 0, then $\frac{a}{c} < \frac{b}{c}$. If a < b and c < 0, then $\frac{a}{c} > \frac{b}{c}$.

Product of Powers Property $a^m \cdot a^n = a^{m+n}$

Power of a Product Property $(ab)^m = a^m b^m$

Quotient Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
, where $a \ge 0$ and $b > 0$

Patterns

Square of a Binomial Pattern $(a + b)^2 = a^2 + 2ab + b^2$ $(a - b)^2 = a^2 - 2ab + b^2$

Difference of Two Squares Pattern $a^2 - b^2 = (a + b)(a - b)$

Formulas

Slope

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Standard form of a linear equation Ax + By = C, where A and B are not both 0

Vertex form of a quadratic function $f(x) = a(x - h)^2 + k$, where $a \neq 0$

Axis of Symmetry

 $x = \frac{-b}{2a}$

Exponential growth $y = a(1 + r)^t$, where a > 0 and r > 0

Explicit rule for an arithmetic sequence $a_n = a_1 + (n-1)d$

Recursive equation for an arithmetic sequence $a_n = a_{n-1} + d$

Sum and Difference Pattern $(a + b)(a - b) = a^2 - b^2$

Perfect Square Trinomial Pattern $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$

Slope-intercept form y = mx + b

Point-slope form $y - y_1 = m(x - x_1)$

Standard form of a quadratic function $f(x) = ax^2 + bx + c$, where $a \neq 0$

Intercept form of a quadratic function f(x) = a(x - p)(x - q), where $a \neq 0$

Quadratic Formula

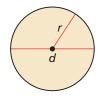
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ where } a \neq 0 \text{ and } b^2 - 4ac \ge 0$$

Exponential decay $y = a(1 - r)^t$, where a > 0 and 0 < r < 1

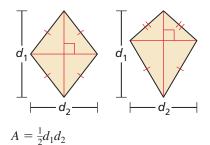
Explicit rule for a geometric sequence $a_n = a_1 r^{n-1}$

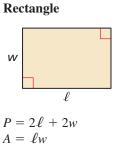
Recursive equation for a geometric sequence

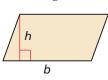
 $a_n = r \bullet a_{n-1}$


Perimeter, Area, and Volume Formulas

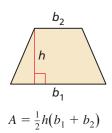
Square


P = 4s $A = s^2$

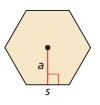

Circle


 $C = \pi d$ or $C = 2\pi r$ $A = \pi r^2$

Parallelogram


A = bh

Triangle



P = a + b + c $A = \frac{1}{2}bh$

Trapezoid

Regular n-gon

$$A = \frac{1}{2}aP$$
 or $A = \frac{1}{2}a \cdot ns$

Sphere

Prism

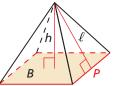

L = PhS = 2B + PhV = Bh

Cone

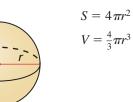
 $L = \pi r \ell$

 $V = \frac{1}{3}\pi r^2 h$

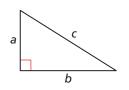
 $S = \pi r^2 + \pi r \ell$


Cylinder

 $L = 2\pi rh$ $S = 2\pi r^2 + 2\pi r h$ $V = \pi r^2 h$


h

Pyramid



Other Formulas

Pythagorean Theorem

 $a^2 + b^2 = c^2$

Conversions

U.S. Customary

foot = 12 inches
yard = 3 feet
mile = 5280 feet
mile = 1760 yards
acre = 43,560 square feet
cup = 8 fluid ounces
pint = 2 cups
quart = 2 pints
gallon = 4 quarts
gallon = 231 cubic inches
pound = 16 ounces
ton = 2000 pounds

Metric

centimeter = 10 millimeters
meter = 100 centimeters
kilometer = 1000 meters
liter = 1000 milliliters
kiloliter = 1000 liters
milliliter = 1 cubic centimeter
liter = 1000 cubic centimeters
cubic millimeter = 0.001 milliliter
gram = 1000 milligrams
kilogram = 1000 grams

Simple Interest I = Prt

Compound Interest $y = P \left(1 + \frac{r}{n} \right)^{nt}$

Distance d = rt

U.S. Customary to Metric

1 inch = 2.54 centimeters 1 foot \approx 0.3 meter 1 mile \approx 1.61 kilometers 1 quart \approx 0.95 liter 1 gallon \approx 3.79 liters 1 cup \approx 237 milliliters 1 pound \approx 0.45 kilogram 1 ounce \approx 28.3 grams 1 gallon \approx 3785 cubic centimeters

Time

1 minute = 60 seconds 1 hour = 60 minutes 1 hour = 3600 seconds 1 year = 52 weeks

Temperature

 $C = \frac{5}{9}(F - 32)$ F = $\frac{9}{5}C + 32$

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch 1 meter ≈ 3.28 feet 1 meter ≈ 39.37 inches 1 kilometer ≈ 0.62 mile 1 liter ≈ 1.06 quarts 1 liter ≈ 0.26 gallon 1 kilogram ≈ 2.2 pounds 1 gram ≈ 0.035 ounce 1 cubic meter ≈ 264 gallons