An Introduction to Basic Statisticsand Probability

Shenek Heyward

NCSU

An Introduction to Basic Statistics and Probability – p. 1

Outline

- Basic probability concepts
- Conditional probability
- Discrete Random Variables and Probability Distributions
- Continuous Random Variables and Probability**Distributions**
- Sampling Distribution of the Sample Mean
- Central Limit Theorem

Idea of Probability

- Chance behavior is unpredictable in the short run, but has ^a regular and predictable pattern in the long run.
- The probability of any outcome of a random phenomenom is the proportion of times the outcomewould occur in ^a very long series of repetitions.

Terminology

- Sample Space the set of all possible outcomes of a random phenomenon
- Event any set of outcomes of interest
- Probability of an event the relative frequency of this set of outcomes over an infinite number of trials
- \bullet Pr(A) is the probability of event A

Example

- **Suppose we roll two die and take their sum**
- $S\,$ $S = \{2, 3, 4, 5, \ldots, 11, 12\}$

$$
\bullet \ \Pr(sum=5) = \frac{4}{36}
$$

Because we get the sum of two die to be 5 if we roll ^a \bullet $(1,4)$, $(2,3)$, $(3,2)$ or $(4,1)$.

Notation

- Let A and B denote two events.
	- $A \cup B$ is the event that either A or B or both occur.
	- $A \cap B$ is the event that both A and B occur simultaneously.
	- The complement of A is denoted by A .
		- A is the event that A does not occur.
		- Note that $Pr(A) = 1 Pr(A)$.

Definitions

- A and B are mutually exclusive if both cannot occur at A \bullet the same time.
- A and B are independent events if and only if

 $Pr(A \cap B) = Pr(A) Pr(B).$

Laws of Probability

Multiplication Law: If $A_1,$ $, \cdots, A$ $\,$ $\mathrm{k}% \left\vert \mathcal{A}\right\vert$ are independent events, then

> $Pr(A_1 \cap A_2 \cap \cdots \cap A_k) = Pr(A_1) Pr(A_2)$ $) \cdots Pr(A_k).$

Addition Law: If A and B are any events, then

 $Pr(A\cup B) = Pr(A) + Pr(B)$ − $-\Pr(A \cap B)$

Note: This law can be extended to more than 2 events.

Conditional Probability

The conditional probability of B given A

$$
\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}
$$

 A and B are independent events if and only if

$$
\Pr(B|A) = \Pr(B) = \Pr(B|\overline{A})
$$

Random Variable

- A random variable is a variable whose value is a numerical outcome of ^a random phenomenon
- Usually denoted by $X,$ Y or $Z.$
- **Can be**
	- Discrete ^a random variable that has finite orcountable infinite possible values
		- Example: the number of days that it rains yearly
	- Continuous ^a random variable that has an (continuous) interval for its set of possible valuesExample: amount of preparation time for the SAT

Probability Distributions

- The probability distribution for a random variable X gives
	- the possible values for $X,$ and
	- the probabilities associated with each possible value(i.e., the likelihood that the values will occur)
- The methods used to specify discrete prob. distributions are similar to (but slightly different from)those used to specify continuous prob. distributions.

Probability Mass Function

- $f(x)$ Probability mass function for a discrete random variable X having possible values x_1, x_2, \cdots
- $f(x_i) = \Pr(X = x_i)$ is the probability that X has the value x_i
- **Properties**
	- $0\leq f(x_i)\leq 1$
	- $\sum_i f(x_i) = f(x_1) + f(x_2) + \cdots = 1$
- $f(x_i)$ can be displayed as a table or as a mathematical function

Probability Mass Function

- Example: (Moore p. 244)Suppose the random variableX is the number of rooms in ^a randomly chosenowner-occupied housing unit in Anaheim, California.
- \bullet The distribution of X is:

Parameters vs. Statistics

- A parameter is a number that describes the population.
Llevelly its value is unlineave. Usually its value is unknown.
- A statistic is a number that can be computed from the sample data without making use of any unknownparameters.
- **In practice, we often use a statistic to estimate an** unknown parameter.

Parameter vs. Statistic Example

- For example, we denote the population mean by $\mu,$ and we can use the sample mean \bar{x} to estimate $\mu.$
- **Suppose we wanted to know the average income of** households in NC.
- To estimate this population mean income $\mu,$ we may randomly take ^a sample of 1000 households andcompute their average income \bar{x} and use this as an estimate for $\mu.$

Expected Value

Expected Value of X or (population) mean

$$
\mu = E(X) = \sum_{i=1}^{R} x_i \Pr(X = x_i) = \sum_{i=1}^{R} x_i f(x_i),
$$

where the sum is over R possible values. R may be
finite exinfinite finite or infinite.

- Analogous to the sample mean \bar{x}
- Represents the "average" value of X

Variance

(Population) variance

$$
\sigma^2 = Var(X)
$$

=
$$
\sum_{i=1}^{R} (x_i - \mu)^2 Pr(X = x_i)
$$

=
$$
\sum_{i=1}^{R} x_i^2 Pr(X = x_i) - \mu^2
$$

- Represents the spread, relative to the expected value, of all values with positive probability
- The standard deviation of $X,$ denoted by $\sigma,$ is the square root of its variance.

Room Example

For the Room example, find the following

- $E(X)$
- $Var(X)$
- $\Pr{}$ [a unit has at least 5 rooms]

Binomial Distribution

- **Structure**
	- Two possible outcomes: Success (S) and Failure (F).
	- Repeat the situation n times (i.e., there are n trials).
	- The "probability of success," p, is constant on eachtrial.
	- **C** The trials are independent.

Binomial Distribution

- Let X = the number of S's in n independent trials.
(Y bas values $x = 0, 1, 2, \ldots, N$ (X has values $x=0,1,2,\cdots,n$)
- Then X has a binomial distribution with parameters n and $p.$
- **•** The binomial probability mass function is

$$
\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, 1, 2, \cdots, n
$$

- Expected Value: $\mu = E(X) = np$
- Variance: $\sigma^2=Var(X)$ 2 $x^2 = Var(X) = np(1)$ $-p)$

Example

- Example: (Moore p.306) Each child born to ^a particular set of parents has probability 0.25 of having blood typeO. If these parents have ⁵ children, what is theprobability that exactly ² of them have type O blood?
- Let $X\!$ = the number of boys

$$
Pr(X = 2) = f(2) = {5 \choose 2} (.25)^2 (.75)^3 = .2637
$$

Example

- What is the expected number of children with type Oblood? $\mu = 5(.25) = 1.25$
- What is the probability of at least ² children with type Oblood?

$$
\Pr(X \ge 2) = \sum_{k=2}^{5} {5 \choose k} (.25)^k (.75)^{5-k}
$$

$$
= 1 - \sum_{k=0}^{1} {5 \choose k} (.25)^k (.75)^{5-k}
$$

$$
= .3671875
$$

Continuous Random Variable

- $f(x)$ Probability density function for a continuous random variable X
- **Properties**
	- $f(x)\geq 0$ $\int_{-\infty}^{\infty}$. $-\infty$ f $(x)dx = 1$

$$
\bullet \ \ P[a \le X \le b] = \int_a^b f(x)dx
$$

- Important Notes
	- $P[a \leq X \leq a] = \int_a^a$ This implies that $P[X]$ $\int_a^a f(x)dx = 0$ = $a]=0$
	- $P[a \le X \le b] = P[a < X < b]$

Summarizations

Summarizations for continuous prob. distributionsMean or Expected Value of X

$$
\mu = EX = \int_{-\infty}^{\infty} x f(x) dx
$$

$$
\sigma^2 = VarX
$$

=
$$
\int_{-\infty}^{\infty} (x - EX)^2 f(x) dx
$$

=
$$
\int_{-\infty}^{\infty} x^2 f(x) dx - (EX)^2
$$

Example

Let X represent the fraction of the population in a
estain eity who obtain the flu vassine certain city who obtain the flu vaccine.

$$
f(x) = \begin{cases} 2x & \text{when } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Find $P(1/4 \leq X \leq 1/2)$

$$
P(1/4 \le X \le 1/2) = \int_{1/4}^{1/2} f(x)dx
$$

$$
= \int_{1/4}^{1/2} 2xdx
$$

$$
= 3/16
$$

An Introduction to Basic Statistics and Probability – p. $25/4$

Example

$$
f(x) = \begin{cases} 2x & \text{when } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}
$$

- Find P($X \geq 1/2$)
- Find EX
- Find $VarX$

Normal Distribution

- Most widely used continuous distribution \bullet
- **Also known as the Gaussian distribution**
- **Symmetric**

Normal Distribution

• Probability density function

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]
$$

 $EX=\mu$

$$
\bullet \ \ Var X = \sigma^2
$$

Notation: $X\sim N(\mu,\sigma^2)$ $^{2})$ \bullet means that X is normally distributed with mean μ and 2variance σ

Standard Normal Distribution

- A normal distribution with mean 0 and variance 1 iscalled a standard normal distribution.
- **Standard normal probability density function**

$$
f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-x^2}{2}\right]
$$

Standard normal cumulative probability functionLet $Z\sim$ $N(0,1)$

$$
\Phi(z) = P(Z \leq z)
$$

Symmetry property

$$
\Phi(-z) = 1 - \Phi(z)
$$

Standardization

Standardization of ^a Normal Random Variable

- Suppose $X\sim N(\mu,\sigma^2)$ $Z\sim N(0,1)$ $^2)$ and let $Z=\frac{X}{X}$ μ $\frac{-\mu}{\sigma}.$ Then $N(0,1).$
- If $X\sim N(\mu,\sigma^2$ $^2),$ what is $P(a < X < b)$?
	- Form equivalent probability in terms of Z :

$$
P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)
$$

Use standard normal tables to compute latterprobability.

Standardization

- Example. (Moore pp.65-67) Heights of Women
- Suppose the distribution of heights of young women arenormally distributed with $\mu=64$ and σ the probability that ^a randomly selected young woman $2 = 2.7^2$ What is will have ^a height between 60 and 70 inches?

$$
Pr(60 < X < 70) = Pr\left(\frac{60 - 64}{2.7} < Z < \frac{70 - 64}{2.7}\right)
$$

= Pr(-1.48 < Z < 2.22)
= $\Phi(2.22) - \Phi(-1.48)$
= .9868 - .0694
= .9174

Sampling Distribution ofX

A natural estimator for the population mean μ is the sample mean

$$
\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}.
$$

- Consider \overline{x} to be a single realization of a random variable X over all possible samples of size $n.$
- The sampling distribution of X is the distribution of X is the distribution of values of \overline{x} over all possible samples of size n that could be selected from the population.

Expected Value ofX

- The average of the sample means (\overline{x} 's) when taken over a large number of random samples of size n will approximate $\mu.$
- Let $X_1,$ population with mean $\mu.$ Then for the sample mean $X,$ x_1, \dots, x_n be a random sample from some $E(X) = \mu.$
- X is an unbiased estimator of $\mu.$

Standard Error ofX

- Let $X_1,$ population with mean μ . and variance σ \ldots, X_n be a random sample from some 2.
- The variance of the sample mean X is given by

$$
Var(\overline{X}) = \sigma^2/n.
$$

• The standard deviation of the sample mean is given by $\sigma/\sqrt{n}.$ This quantity is called the standard error (of the mean).

Standard Error ofX

The standard error σ/\sqrt{n} is estimated by s/\sqrt{n} .

- The standard error measures the variability of sample means from repeated samples of size n drawn from the same population.
- A larger sample provides a more precise estimate X of μ

Sampling Distribution ofX

- Let $X_1,$ that is normally distributed with mean μ and variance σ X_1, \dots, X_n be a random sample from a population 2.
- Then the sample mean X is normally distributed with $\sum_{n=0}^{\infty}$ mean μ and variance $\sigma^2/n.$

That is

 $\overline{X}\sim N(\mu,\sigma^2/n).$

Central Limit Theorem

- Let $X_1,$ population with mean μ and variance σ \ldots, X_n be a random sample from any
tien with mean \ldots and variance $\frac{2}{3}$ 2.
- Then the sample mean X is approximately normally
distributed with means and variance $\frac{2}{3}$ distributed with mean μ and variance $\sigma^2/n.$

Data Sampled from Uniform Distribution

The following is a distribution of X when we take samples
of size 1 of size 1.

Example

The following is a distribution of X when we take samples
of size 10 of size 10.

References

- Moore, David S., "The Basic Practice of Statistics." Third edition. W.H. Freeman and Company. New York. 2003
- Weems, Kimberly. SIBS Presentation, 2005.