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1 Functions

1.1 Definitions

Definition 1 (Function) A function is a rule or set of rules that associates
an input a with exactly one output b.

Definition 2 (Domain) The domain of a function f is the set of values x for
which f(x) is defined.

Definition 3 (Range) The range of a function f is the set of all possible out-
puts f(x).

B Sums, differences, etc. of functions are sometimes abbreviated:

• (f + g)(x) = f(x) + g(x)

• (f − g)(x) = f(x)− g(x)

• (fg)(x) = f(x)g(x)

• (f/g)(x) =
f(x)
g(x)

, provided that g(x) 6= 0

• (f ◦ g)(x) = f(g(x))

• Note: (f ◦ g)(x) is not necessarily equal to (g ◦ f)(x).

Definition 4 (Odd function) A function is odd if for all x in the domain of
f , f(−x) = −f(x). An odd function is symmetric about the origin (0, 0).

Definition 5 (Even function) A function is even if for all x in the domain
of f , f(−x) = f(x). An even function is symmetric about the y=axis.
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Definition 6 (One-to-one function) A function f is one-to-one if, for any
a and b in the domain of f such that a 6= b, then f(a) 6= f(b). In other words,
each output yields a unique input.

• A function is one-to-one if any horizontal line cuts the function at one or
fewer points. (This is called the horizontal line test.)

• If a function is one-to-one, then it has an inverse. This inverse func-
tion, denoted f−1, is defined as follows: f−1(y) = x iff f(x) = y. Thus,
f−1(f(x)) = x

• f−1 is the reflection of f across the line y = x.

Definition 7 (Zero) A zero of a function f is a number x for which f(x) = 0.
Also called the x-intercept of the graph. To find the zeroes of a function f(x),
let f(x) = 0 and solve for x using any methods.

Definition 8 (Polynomial) A polynomial is a function consisting only of pow-
ers of the variable (usually x) multiplied by constant coefficients.

Definition 9 (Rational Function) A rational function is of the form f(x) =
P (x)
Q(x)

, where P (x) and Q(x) are polynomials. Note that Q(x) 6= 0.

1.2 The Absolute Value Function

The absolute value function f(x) = |x| produces the positive “version” of any
input. For example, |1| = 1 and | − 1| = 1.

The absolute value function may be expressed as follows:

• If x ≥ 0, then f(x) = |x| = x.

• If x < 0, then f(x) = |x| = −x.

B The triangle inequality states that |a + b| ≤ |a|+ |b|.

1.3 The Greatest Integer Function

The greatest integer function f(x) = [x] outputs the greatest integer less than
or equal to x. For example, [1.4] = 1, [π] = 3, and [−3.5] = −4.

The greatest integer function may be expressed as follows:

• If x is integral, then f(x) = [x] = x.

• If x = a + b, where 0 < b < 1, then f(x) = [x] = a.
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1.4 Trigonometry

1.4.1 Right-Triangle Definitions

Consider right triangle ABC, where C is the right angle. Then:

sinA =
BC

AB
= opposite

hypotenuse

cos A =
AC

AB
= adjacent

hypotenuse

tan(A) =
BC

AC
= opposite

adjacent

csc A =
1

sinA
=

AB

BC
= hypotenuse

opposite

sec A =
1

cos A
=

AB

AC
= hypotenuse

adjacent

cot A =
1

tanA
=

AC

BC
= adjacent

opposite
One easy way to remember these definitions is to memorize the “word”
SOHCAHTOA, which stands for:

• sin = opposite/hypotenuse

• cos = adjacent/hypotenuse

• tan = opposite/adjacent

1.4.2 Reduction Formulas

1. sin(−x) = − sinx

2. cos(−x) = cos x

3. sin(π
2 − x) = cos x

4. cos(π
2 − x) = sin x

5. sin(π
2 + x) = cos x

6. cos(π
2 + x) = − sinx

7. sin(π − x) = sin x

8. cos(π − x) = − cos x

9. sin(π + x) = − sinx

10. cos(π − x) = − cos x
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1.4.3 Identities

1. sin2 x + cos2 x = 1

2. tan2 x + 1 = sec2 x

3. cot2 x + 1 = csc2 x

1.4.4 Sum and Difference Formulas

1. sin(α + β) = sin α cos β + sinβ cos α

2. sin(α− β) = sin α cos β − sinβ cos α

3. cos(α + β) = cos α cos β − sinα sinβ

4. cos(α− β) = cos α cos β + sinα sinβ

5. tan(α + β) =
tanα + tanβ

1− tanα tanβ

6. tan(α− β) =
tanα− tanβ

1 + tanα tanβ

1.4.5 Double- and Half-Angle Formulas

1. sin 2α = 2 sin α cos α

2. cos 2α = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

3. tan 2α =
2 tanα

1− tan2 α

4. sin
α

2
= ±

√
1− cos α

2
(determine whether it is + or - by finding the

quadrant that
α

2
lies in)

5. cos
α

2
= ±

√
1 + cos α

2
(same as above)

6. tan
α

2
=

1− cos α

sinα
=

sinα

1 + cos α
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1.4.6 Other Useful Trig Formulae

(for formulas 3-6, consider the triangle with sides of length a, b, and c, and
opposite angles A, B, and C, respectively)

1. sin2 α =
1− 2 cos(2α)

2

2. cos2 α =
1 + 2 cos(2α)

2

3.
sinA

a
=

sinB

b
=

sinC

c
(Law of Sines)

4. c2 = a2 + b2 − 2ab cos C (Law of Cosines)

5. Area of triangle = 1
2ab sinC

6. Area of triangle =
√

s(s− a)(s− b)(s− c), where s =
a + b + c

2
(Heron’s

Formula)

1.4.7 Changes to the Trig Graphs

Definition 10 (Periodic) A function f is periodic if, for some number p,
f(x + p) = f(x) for all x in the domain of f .

B The trigonometric functions are all periodic.

• sinx, cos x, csc x, and sec x all have periods of 2π.

• tanx and cotx have periods of π.

B If the x in sinx, cos x, etc., is multiplied by a constant b, the period is divided
by that constant:

• sin bx, cos bx, csc bx, and sec bx (b constant) all have periods of 2π
b

• tan bx and cot bx have periods of π
b .

Definition 11 (Amplitude) The magnitude of an oscillation (only for func-
tions that oscillate, like the sine and cosine). In the sine and the cosine, the
amplitude is half the distance from the minimum to the maximum value.

B A sinx and A cos x each have amplitude A.
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1.4.8 Inverse Trig Functions

If f(x) = sin x, then
f−1(x) = sin−1 x = arcsinx, with −1 ≤ x ≤ 1

If f(x) = cos x, then
f−1(x) = cos−1 x = arccos x, with −1 ≤ x ≤ 1

If f(x) = tanx, then
f−1(x) = tan−1 x = arctanx, with −π

2 ≤ x ≤ π
2

1.5 Exponential and Logarithmic Functions

1.5.1 Laws of Exponents

1. a0 = 1

2. a1 = a

3. am · an = am+n

4. am ÷ an = am−n

5. (am)n = amn

6. a−m =
1

am

1.5.2 Logarithms

Definition 12 (Logarithm (log)) The logarithm base a of a number is the
power to which a should be raised in order to obtain that number. That is,
y = loga x iff ay = x

Definition 13 (Natural Logarithm (ln)) y = ln x iff ey = x

B Laws of Logarithms (compare to Laws of Exponents)

1. loga 1 = 0

2. loga a = 1

3. loga mn = loga m + loga n

4. loga

m

n
= loga m− loga n

5. loga xm = m loga x

6. loga x =
1

logx a
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1.6 Parametric Functions

Definition 14 (Parametric Equations) A set of equations that define sev-
eral variables (usually two) in terms of another variable.

B Parametric equations are often of the form x = f(t) and y = g(t).

B To eliminate the parameter (in this case, t), we often use the identity sin2 t+
cos2 t = 1.

2 Differentiation

Definition 15 (Difference quotient) The fraction f(a+h)−f(a)
h is the differ-

ence quotient for f at a. It represents the average rate of change from x = a to
x = a + h. As h goes to 0, the average rate of change approaches the instanta-
neous rate of change, which we will define as f ′(x):

f ′(a) = lim
h→0

f(a + h)− f(a)
h

If f’(a) exists, then from the above equation, we know that limx→c = f(c).
So if a function is differentiable, the it is continuous. (However, the reverse
is not necessarily true; a function may be continuous at a point but not be
differentiable at that point.

A function is not differentiable at x = a if . . .

1. The graph has a hole (removable discontinuity) at x = a.

2. The graph jumps from one y-value to another (jump discontinuity) at
x = a.

3. x=c is a vertical asymptote (limx→c = ±∞)

4. The graph has a vertical tangent at x = a (f ′(c) = ±∞)

5. There is a corner at x = a, so there are infinitely many tangents passing
through (x, f(x))

6. There is a cusp at x = a, so there are infinitely many tangents passing
through (x, f(x)).

2.1 The Chain Rule

Theorem 1 (The Chain Rule) To differentiate a compositite function, we
take the derivative of the outside function (treating the insides as a single mass),
and multiply this by the derivative of the inside function:
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(f(g(x)))′ = f ′(g(x))g′(x)

Alternate form:

Let y = f(u) and u = g(x). Then
dy

dx
=

dy

du
+

du

dx
.

2.2 Basic Differentiation Formulas

1. da
dx = 0

2. d
dxax = a

3. d
dxxn = nxn−1

4.
d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x)

5.
d

dx
f(x)g(x) = g(x)

d

dx
f(x) + f(x)

d

dx
g(x)

6.
d

dx

f(x)
g(x)

=
g(x) d

dxf(x)− f(x) d
dxg(x)

(g(x))2

2.3 Trigonometric Differentiation Formulas

1. d
dx sinx = cos x

2. d
dx cos x = − sinx

3. d
dx tanx = sec2 x

4. d
dx csc x = − csc x cot x

5. d
dx sec x = sec x tanx

6. d
dx cot x = − csc2 x

7.
d

dx
sin−1 x =

1√
1− x2

8.
d

dx
cos−1 x = − 1√

1− x2

9.
d

dx
tan−1 x =

1
1 + x2

10.
d

dx
csc−1 x = − 1

|x|
√

x2 − 1

11.
d

dx
sec−1 x =

1
|x|
√

x2 − 1
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12.
d

dx
cot−1 x = − 1

1 + x2

2.4 Exponential/Logarithmic Differentiation Formulas

1.
d

dx
lnx =

1
x

2. d
dxex = ex

3. d
dxax = ax ln a

B Logarithmic Differentiation (for derivatives of exponential functions):
y = f(x)
ln y = ln f(x)
d

dx
ln y =

d

dx
ln f(x)

1
y
· dy

dx
=

1
f(x)

· d

dx
f(x)

dy

dx
= y · 1

f(x)
· d

dx
f(x)

2.5 Implicit Differentiation

When we do not have an explicit form (y = f(x)) for y, it may be easiest to
differentiate implicitly. This is done by differentiating both sides with respect
to x, and then solving for dy

dx .

2.6 Other Formulae and Theorems

Formula 1 (Derivatives of Parametric Functions) Suppose that x = f(t)
and y = g(t) are differentiable functions of t. Then
dy

dx
=

dy/dt

dx/dt

(you can remember this by imagining each 1
dt cancelling)

d2y

dx2
= (

d

dt

dy

dx
)
dt

dx

Formula 2 (Derivative of an Inverse Function) Suppose that f(x) is a one-
to-one function (that is, it has an inverse). Then if f(x) passes through the point
(a, b), its inverse f−1(x) will pass through the point (b, a). So

(f−1)′(b) =
1

f ′(a)
.
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Theorem 2 (The Mean Value Theorem (MVT)) If the function f(x) is
continuous on the interval [a, b] and differentiable on the interval (a, b), then

there exists at least one number c such that
f(b)− f(a)

b− a
= f ′(c). (That is, the

instantaneous rate of change is equal to the average rate of change at some point
on the interval.)

The following is a specific case of the MVT:

Theorem 3 (Rolle’s Theorem) If f(a) = f(b) = 0, then for some c in [a, b],
f ′(c) = 0.

Theorem 4 (L’Hopital’s Rule) If one of the four is true:

• lim
x→a

f(x) = lim
x→a

g(x) = 0,

• lim
x→∞

f(x) = lim
x→∞

g(x) = 0,

• lim
x→a

f(x) = lim
x→a

g(x) = ∞, or

• lim
x→∞

f(x) = lim
x→∞

g(x) = ∞

then the limit in question is equal to

lim
x→a

f ′(x)
g′(x)

or lim
x→∞

f ′(x)
g′(x)

, depending on whether x was approaching a or ∞.

L’Hopital’s rule can be applied to certain other indeterminate forms, namely
0 · ∞ and 00. To apply it to the former, rewrite it as 0 · 1

0 = 0
0 . To apply it to

the latter, rewrite it as eln(00) and apply the laws of logarithms.

2.7 Estimating

It is possible to estimate the value of a derivative at x = a by finding the
difference quotient f(a+h)−f(a)

h for small values of h.

Alternatively, it may be desirable to use the symmetric difference quotient
f(a + h)− f(a− h)

2h
to estimate f ′(a).

3 Applications of Differentiation

3.1 Slope

The value of the derivative of a curve at x = a is the slope of the curve at that
point.
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Definition 16 (Critical Point) A critical point is a point at x = c such that
f ′(c) = 0 or f ′(c) is undefined. To determine the critical points of a function,
find its derivative, determine which values of x make it undefined, and solve for
f ′(x) = 0 for the remaining values.
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