Algebra – Things to Remember!

|-5|=5

| 5 | = 5

Absolute Value:

Represents distance

Scientific Notation: 3.2×10^{13}

The first number must be 1 < n < 10

Factorial:

5! = 5•4•3•2•1 1! = 1

FYI: 0!=1

Exponents:

 $(-3)^2 \neq -3^2$

$$\chi^m \bullet \chi^n = \chi^{m+n}$$

 $2^0 = 1$

$$(x^n)^m = x^{n \cdot m}$$

$$4^{-3} = \frac{1}{4^3}$$

$$\frac{x^m}{x^n} = x^{m-n}$$
$$(xy)^n = x^n \cdot y^n$$

Properties of Real Numbers:

Commutative Property: a + b = b + aAssociative Property: a+(b+c) = (a+b)+c

Distributive Property: a(b+c) = ab + ac

Identity: a + 0 = a $\mathbf{a} \cdot \mathbf{1} = \mathbf{a}$ Inverse: $a \cdot (1/a) = 1$ a + (-a) = 0Zero Property: $a \cdot 0 = 0$

Undefined:

 $\frac{6}{7-x}$ is undefined when x = 7 since

the denominator = 0.

Multiply: (distribute or FOIL)

$$(x+3)(x+2) = x \cdot x + x \cdot 2 + 3 \cdot x + 3 \cdot 2$$

= $x^2 + 5x + 6$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Polygons and sides:

triangle - 3octagon – 8 quadrilateral – 4 nonagon – 9 pentagon -5decagon – 10 dodecagon - 12 hexagon – 6

septagon – 7

Direct Variation:

y = kx where k =constant of variation k = y/x

Degree:

Degree of monomial = sum of exponents $4x^3$ is of degree 3 x^2y^3 is of degree 5

Solving Equations:

- 1. Deal with any parentheses in the problem.
- 2. Combine similar terms on same side of = sign.
- 3. Get the needed variables on the same side of = sign.
- 4. Isolate the needed variable by add or subtract.
- 5. Find the needed variable by divide or multiply.

Add Fractions:

Get the common denominator:

$$\frac{5x}{6} + \frac{3x}{2} = \frac{5x}{6} + \frac{9x}{6} = \frac{14x}{6} = \frac{7x}{3}$$

Factor:

Look for a GCF (greatest common factor) Factor binomial or trinomial.

$$a^2 - b^2 = (a+b)(a-b)$$

Ouadratic Equation:

 $x^2 - 5x + 6 = 0$ Set = 0. (x-3)(x-2) = 0 Factor.

x = 3;	x = 2	Find roots

Interval Notation: $(1.5) \leftrightarrow 1 < x < 5$

ab = ba

a(bc) = (ab)c

 $[1,5] \leftrightarrow 1 \le x \le 5$

$$x = 3; \quad x = 2$$
 Find roots

Inequalities:

5 - 3x < 13 + xRemember to change direction -3x < 8 + x

of inequality when -4x < 8

mult/div by a negative. $x \ge -2$

x = abscissa, y = ordinate

Slope:

 $m = \frac{vertical\ change}{horizontal\ change} = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}.$

Systems:

y - 2x = 1	<i>Linear:</i> substitute;	
y + 2x = 9	add to eliminate one	
	variable or graph.	
$y = x^2 - x - 6$	Linear Quadratic:	
y = 2x - 2	substitute or graph	
For inequality systems, graph		

For inequality systems, graph. **Equations of Lines:** m = slope

y = mx + b slope-intercept $y - y_1 = m(x - x_1)$ point-slope

Function: Passes the vertical line test. A set of ordered pairs in which each x element has only one y element associated with it.

$$f(x) = 3x + 4$$
$$f(3) = 3 \cdot 3 + 4 = 13$$

Parallel and Perpendicular:

Parallel: slopes are equal. Perpendicular: slopes are negative reciprocals (flip over and negate)

Parabola:

 $y = ax^2 + bx + c$ Axis of symmetry:

$$x = \frac{-b}{2a}$$

Roots: where the graph crosses the x-axis.

Perimeter:	add the distances around
the outside.	

Circumference:
$$C = 2\pi r = \pi d$$

Pythagorean Theorem:

7, 24, 25

Right Triangles only.
$$c^2 = a^2 + b^2$$

Triples: 3, 4, 5
5, 12, 13
8, 15, 17

Trig: Right triangles only

$$\sin \angle A = \frac{o}{h}$$
; $\cos \angle A = \frac{a}{h}$; $\tan \angle A = \frac{o}{a}$

Angle of elevation: from horizontal line of sight up. Angle of depression: from horizontal line of sight down.

Area:

$$A_{triangle} = \frac{1}{2}bh$$

$$A_{equilateral\ triangle} = \frac{s^2\sqrt{3}}{4}$$

$$A_{\text{rectangle}} = bh$$

$$A_{\text{square}} = bh = s^2$$

$$A_{\text{parallelogram}} = bh$$

$$A_{\text{rhombus}} = bh = \frac{d_1 \cdot d_2}{2}$$

$$A_{\text{trapezoid}} = \frac{1}{2}h(b_1 + b_2)$$

$$A_{\rm circle} = \pi r^2$$

$$A_{\text{sector of circle}} = \frac{n}{360} \pi r^2$$

$$A_{\text{semicircle}} = \frac{1}{2}\pi r^2$$

$$A_{\text{quarter circle}} = \frac{1}{4}\pi r^2$$

Literal equations:

$$a = b + cd$$
, solve for c .
 $a - b = cd$

$$a-b=c$$

Volume and Surface Area:

$$V_{\text{rectangular solid}} = l \cdot w \cdot h$$

$$SA_{\text{rectangular solid}} = 2lh + 2hw + 2lw$$

$$V_{\text{cylinder}} = \pi r^2 h$$

$$SA_{\text{closed cylinder}} = 2\pi rh + 2\pi r^2$$

Error in Measurement:

Relative error =
$$\underline{|measure-actual|}$$
 actual

Permutations:

Arrangement in specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Data:

5 Statistical Summary: minimum, maximum, median, 1st quartile, 3rd quartile

Quartiles divide data into 4 equal parts.

Percentiles divide data into 100 equal parts.

Percentile rank of score $x = \frac{number\ of\ scores\ below\ x}{n} \cdot 100$, where *n* is

the number of scores.

Mean = average.

Mode = most often (may be more than one answer).

Median = middle.

Outliers = values that are far away from the rest of the data.

Median best describes data if outliers exist.

Range = difference between the maximum and minimum values.

Probability: P(A') = 1 - P(A) complement

 $P(A \text{ and } B) = P(A) \cdot P(B) \text{ independent}$

 $P(A \text{ and } B) = P(A) \cdot P(B/A)$ dependent

P(A or B) = P(A) + P(B) mutually exclusive

P(A or B) = P(A) + P(B) - P(A and B) not exclusive P(B/A) = P(A and B)/P(A) conditional probability

P(B/A) means probability of B given A has occurred.

Sets:

 $A \cup B$ Union - all elements in both sets.

 $A \cap B$ Intersection - elements where sets overlap.

A' Complement - elements not in the set.

 $\{\}$ or \emptyset means null set.

Box and Whisker Plot: 1st and 3rd quartiles are at the ends of the box, median is a vertical line in the box, and the max/min are at the ends of the whiskers.

Helpful in interpreting the distribution of data.

Exponential Growth and Decay:

Decay: $y = ab^x$ where a > 0 and 0 < b < 1

Growth: $y = ab^x$ where a > 0 and b > 1